SYNTHESIS AND CHARACTERISATION OF $[AgL(\mu-PR_2)M(CO)_5]$, L = 1,10-PHENANTHROLINE OR TRICYCLOHEXYLPHOSPHINE; M = Cr, Mo, W

DAGMAR OBENDORF and PAUL PERINGER *

Institut für Anorganische und Analytische Chemie der Universität Innsbruck, Innrain 52a, A-6020 Innsbruck (Austria)

(Received July 4th, 1985)

Summary

The new heterobimetallic phosphido-bridged compounds $[AgL(\mu-PR_2)M(CO)_5]$, (L=1,10-phenanthroline or tricyclohexylphosphine; M=Cr, Mo, W) have been prepared from AgO_3SCF_3 , $M(CO)_5PR_2H$ and the ligand L in the presence of Et_2NH or MeO as base, and characterized by ³¹P NMR spectroscopy.

There appear to be no previous reports of silver(I) phosphido complexes, although there are numerous examples of Ag—P-bonded species in coordination complexes of silver(I) with neutral phosphorus ligands (e.g. t-phosphines [1]), as well as with anionic (e.g. phosphito [2] or phosphinito [2]) ligands. We describe here a series of phosphido-bridged silver(I)-Group VIB metal complexes of the type [Ag(μ -PR₂)M(CO)₅] with M = Cr, Mo and W.

Experimental

NMR spectra were recorded on a multinuclear Bruker WP-80 spectrometer operating in the FT mode. Chemical analyses were performed on a Heraeus EA 415. The phosphine complexes $M(CO)_5PR_2H$, R=Cy, Cy=cyclohexyl, M=Cr; R=Ph, M=Cr, M, M were made as previously described [3] and the other reagents were obtained commercially. The experiments described below were all carried out under nitrogen.

Preparation of $[Ag(phen)(\mu-PPh_2)Mo(CO_5]$ (phen = 1,10-phenanthroline)

A solution of AgO₃SCF₃ (103 mg, 0.4 mmol) in a mixture of 0.5 cm³ of Et₂NH and 1 cm³ of toluene was cooled to 273 K and Mo(CO)₅PPh₂H (169 mg, 0.4 mmol) was added. The resulting solution was filtered into a solution of 79 mg (0.4 mmol) of 1,10-phenanthroline in 1 cm³ of CH₂Cl₂. The product crystallized out as yellow needles (81%) upon standing. It decomposes above 130°C.

Found: C, 49.6; H, 2.6; N, 4.1. $C_{29}H_{18}AgMoN_2O_5P$ calcd.: C, 49.1; H, 2.6; N, 3.9. The following were prepared analogously;

[$Ag(phen)(\mu-PPh_2)Cr(CO)_5$], dec. 120°C. Found: C. 52.1: H. 2.9; N. 4.2. $C_{29}H_{18}AgCrN_2O_5P$ calcd.: C. 52.4, H. 2.7, N. 4.2%.

 $[Ag(phen)(\mu-PPh_2)W(CO)_s]$. dec. 135°C. Found: C. 43.9; H. 2.0; N. 3.5. $C_{29}H_{18}N_2O_5PW$ calcd.: C. 43.7; H. 2.3; N. 3.5%.

Preparation of $[Ag(phen)(\mu-PCy_s)Cr(CO)_s]$

A solution containing equivalent amounts of AgO_3SCF_3 and $Cr(CO)_5PCy_2H$ in diethylamine/toluene = 1/2 was set aside overnight. After addition of one equivalent of NaOMe the rest of the procedure was as described and gave pale yellow crystals of the product in 40% yield. It decomposes above $135^{\circ}C$. Found: C, 51.1: H, 4.5; N, 4.6. $C_{29}H_{30}AgCrN_2O_5P$ calcd.: C, 51.4: H, 4.5; N, 4.1%.

Preparation of $[Ag(PCv_x)(\mu-PPh_2)Mo(CO)_5]$

A solution of AgO₃SCF₃ (103 mg, 0.4 mmol) in a mixture of 0.5 cm³ of Et₂NH and 1 cm³ of toluene was cooled to 273 K and Mo(CO), PPh₂H (169 mg, 0.4 mmol) was added. The resulting solution was filtered onto 112 mg (0.4 mmol) of solid PCy₃. The volume of the resulting solution was reduced in vacuo to ca. 0.5 cm³ and 1 cm³ of methanol added. The product separated as yellowish white crystals, yield 59%. It decomposes above 120°C. Found: C. 51.5; H, 5.1. C₃₈H₄₃AgMoO₅P₂ calcd.: C. 51.9; H, 5.4%.

The following were prepared analogously:

[AgtPCy₃)(μ-PPh₂)Cr(CO)₅] dec. 129°C. Found: C. 54.6; H. 6.4. C₃₅H₄₃AgCrO₅P caled.: C. 54.9; H. 5.7%.

 $[Ag(PCy_3)(\mu - PPh_5)W(CO)_3]$ dec. 110°C. Found: C. 47.1; H. 5.7. C₃₈H₄₃AgO₅P₂W calcd.: C. 46.8; H. 4.8%.

Results and discussion

Pentaearbonyldiphenylphosphinechromium Cr(CO)₅PPh₂H is readily deprotonated in the presence of silver(I)trifluoromethanesulfonate in diethylamine/toluene solution to yield the new dinuclear phosphido-bridged compound I as in eq. 1:

$$Cr(CO)_5PPh_2H + AgO_3SCF_3 + Et_2NH \rightarrow AgPPh_2Cr(CO)_5 + NEt_2H_2O_3SCF_3$$
(1)
(1)

The coordination sphere of Ag is thought to be completed by Et_2NH molecules. $\text{Mo}(\text{CO})_5\text{PPh}_2\text{H}$ and $\text{W}(\text{CO})_5\text{PPh}_2\text{H}$ react similarly, to give $[\text{Ag}(\mu\text{-PPh}_2)\text{M}(\text{CO})_8]$ (M = Mo, W). The reactions are complete within a few minutes at ambient temperature. The analogous reaction involving $\text{Cr}(\text{CO})_5\text{PCy}_2\text{H}$ takes one week, and by-products are formed. This reaction complete within 1 d if one equivalent of sodium methoxide is present.

The structures of $[Ag(\mu-PR_2)M(CO)_5]$ are revealed by ${}^{31}P\{{}^{1}H\}$ NMR spectroscopy which shows the phosphorus atoms to be coupled to ${}^{107}Ag$ (52%, $I=\frac{1}{2}$) and ${}^{109}Ag$ (48%, $I=\frac{1}{2}$). The Ag-P bonds are kinetically stable on the NMR time scale at temperatures below 273 K. The ${}^{31}P$ resonance of phosphido groups is particularly sensitive to the presence of a metal-metal interaction between the bridged metal atoms [4]. The position of the ${}^{31}P$ chemical shift indicates the absence of a Ag-Group

R	М	$\delta(^{31}P)$	$^{1}J(^{107}Ag,^{31}P)$	$^{1}J(^{183}W,^{31}P)$	
Ph	Cr	1.6	503	_	
Ph	Mo	-21.1	477	_	
Ph	W	-40.3	496	155	
Cv	Cr	19.6	485	_	

TABLE 1 NMR PARAMETERS FOR $[Ag(\mu-PR_2)M(CO)_5]^{\mu}$

VIB metal interaction in the present compounds. The ³¹P chemical shifts of the complexes appear at lower frequencies than those for $M(CO)_5PR_2H$, but at higher frequencies than those for $M(CO)_5PR_2^-$ (e.g. $Cr(CO)_5PPh_2Li$: $\delta(^{31}P)-30.0$ ppm in THF.) The one-bond silver phosphorus coupling constants are smaller than those for the corresponding phosphito, phosphino or phosphine complexes. Electronegative substitution at the phosphorus atom causes an increase in $^1J(Ag,P)$, as reported for $^1J(Pt,P)$ in platinum complexes [5]. The magnitudes of the Ag–P coupling constants of $[Ag(\mu-PPh_2)M(CO)_5]$ decrease in the order M=Cr>W>Mo, whereas an order of Mo>Cr>W was observed [6] for J(Sn,P) in the series $[Me_3Sn(\mu-Bu_2P)M(CO)_5]$. The Hg-P couplings in $[Hg\{(\mu-PPh_2)M(CO)_5\}_2]$ and $[Hg(phen)\{(\mu-PPh_2)M(CO)_5\}_2]$ are known to decrease in the order W>Cr>Mo [7,8].

Substitution of the P-bound proton in $M(CO)_5PR_2H$ by silver drastically lowers ${}^{1}J({}^{183}W, {}^{31}P)$ (from 229 to 155 Hz), as observed for Sn and Hg [6–8].

The NMR data for the compounds in diethylamine/toluene solution are summarized in Table 1. No diethylamine complexes could be isolated in the solid state. The 1,10-phenanthroline complexes II were obtained as stable pale yellow crystals upon addition of one equivalent 1,10-phenanthroline.

$$Ag PR_2 M(CO)_5$$

$$(II)$$

The addition of one equivalent tricyclohexylphosphine to a solution of I in diethylamine/toluene gave the isolable phosphine coordination products III. The nature of these compounds was determined by ³¹P NMR spectroscopy (see in Table 2).

$$Cy_3PAgPR_2M(CO)_5$$
(III)

[&]quot; 0.3 mmol/cm^3 diethylamine/toluene (2/1), 273 K, chemical shifts in ppm to high frequency of 85% H_1PO_4 , coupling constants in Hz.

TABLE 2 NMR PARAMETERS FOR [Ag(PCv₃)(μ-PPh₂)M(CO)₃] ^(c)

М	$\delta(PCy_3)$	$\delta(P \operatorname{Ph}_2)$	¹ J(¹⁰⁷ Ag, PCy ₃)	$^{1}J(^{107}\text{Ag}, PP\text{h}_{\odot})$	(31P.31P)
Cr	36.4(28.3)	1.4(-8.1)	470(399)	459(362)	148(113)
Мо	36.6(28.1)	-18.3(-24.9)	455(396)	429(355)	148(113)
W	36.3(27.6)	-37.2(-43.1)	463(399	440(355)	152(113)

 $^{^{\}prime\prime}$ 0.3 mmol/cm 3 CH₂Cl₂, (Et₂NH/MePh = 1/2), 213 K, chemical shifts in ppm to high frequency of 85% H₃PO₄, coupling constants in Hz.

References

- 1 E.L. Muetterties and C.W. Alegranti, J. Amer. Chem. Soc., 94 (1972) 6386.
- 2 P.P. Winkler and P. Peringer, Trans. Met. Chem., 7 (1982) 313.
- 3 J.E. Smith and D.T. Thompson, J. Chem. Soc. (A), (1967) 1694.
- 4 A.J. Carty, F. Hartstock and N.J. Taylor, Inorg. Chem., 21 (1982) 1349; P.E. Kreter and D.W. Meck. Inorg. Chem., 22 (1983) 319; A.D. Harley, G.J. Guskey and G.L. Geoffroy, Organometallics, 2 (1983) 53.
- 5 A. Pidcock, L.M. Venanzi and R.E. Richards, J. Chem. Soc. A. (1966) 1707.
- 6 H. Schumann and H.J. Kroth, Z. Naturforsch, B, 32 (1977) 876.
- 7 P. Peringer and J. Eichbichler, J. Chem. Soc., Dalton Trans., (1982) 667.
- 8 P. Peringer, Polyhedron, 1 (1983) 819.